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Abstract. Given a structure made up ofn sites connected byb bars, the problem of recognizing
which subsets of sites form rigid units is not a trivial one because of the non-local character of
rigidity in central-force systems. Even though this is a very old problem of statics, no simple
algorithms are available for it, so the most usual approach has been to solve the elastic equations,
which is very time consuming for large systems. Recently an integer algorithm was proposed
for this problem in two dimensions, using matching methods from graph theory and Laman’s
theorem for two-dimensional graphs. The method is relatively simple, but its time complexity
grows asn2 in the worst case, and almost as fast on practical cases, so that an improvement is
highly desirable. In this paper we describe a further elaboration of that procedure, which relies
upon the description of the system as a collection of rigidbodies connected by bars, instead
of sites connected by bars. Sets of rigidly connected objects are replaced by a unique body,
and this is done recursively as more rigid connections between bodies are discovered at larger
scales. As a consequence of this ‘rescaling transformation’, our algorithm has much improved
average behaviour, even when its worst-case complexity remainsn2. The time complexity of
the body–bar algorithm is found to scale asn1.12 for the randomly diluted triangular lattice,
while the original site–bar version scales asn1.9 for the same problem.

1. Introduction

Consider a structure‡ made ofn sites connected byb bars ind dimensions. Determining
the rigid properties of such systems constitutes a problem of obvious technological interest,
which has already been under study for a long time. The first formal results date back to
Maxwell [1], who discussed the connections between statics and geometry. Later theoretical
work in the field [2, 4–6, 9, 18, 22–24], was carried out by mathematicians and is not widely
known among physicists, although the concept of rigidity appears in many fields of physics,
such as, for example, glasses [10, 20], critical phenomena [11] and granular materials [12]
among others.

The physicists’ treatment of this problem often reduced to a brute-force solution of the
elastic equations because of the lack of a simple integer algorithm for the identification of the
rigid clusters. In this work, recent progress in the design of such algorithms for the analysis
of rigid properties of generic lattices is reported. To do so, let us start by briefly introducing
some of the basics of rigidity. In this section the main ideas will be described qualitatively,

† Present Address: Instituto de Fı́sica, Universidade Federal de Rio Grande do Sul, Porto Alegre RS, Brazil;
e-mail address: cristian@if.ufrgs.br
‡ The wordsstructureor lattice are used in this work to describe a set of point-like objects (called joints or nodes)
connected by bars (also called bonds or edges). Bars are only able to transmit forces in the direction of their axis.
No regularity is assumed whatsoever. In the engineering context this is usually called aframework.

0305-4470/96/248079+20$19.50c© 1996 IOP Publishing Ltd 8079



8080 C Moukarzel

Figure 1. A simple illustration of the reasons for which a structure may fail to be infinitesimally
rigid (cases (a) and (c)) is provided by a triangle. Case (a) is flexible since it admits a continuous
deformation. Case (b) is both rigid (no continuous deformation is possible) and infinitesimally
rigid (no infinitesimal deformation is possible). Case (c) on the other hand provides an example
of a degenerateconfiguration, for which the structure is rigid (there is no continuous deformation
leaving all bar lengths unchanged) but not infinitesimally rigid, since site 3 may be displaced
by an infinitesimally small amount, and all bar lengths would remain unchanged to first order
in the displacement. Failure to be infinitesimally rigid can be shown to be equivalent to the
existence of zero-frequency modes in the linear approximation of the vibratory behaviour of the
structure.

leaving more precise definitions, which will be made with the aid of the rigidity matrix, to
the next section. The interested reader is referred to the recent literature for more complete
descriptions [5, 6, 9], alternative approaches [18, 21] and recent results [22–24] in the field
of rigidity.

A structure† is flexible if it admits a continuous deformation (a finiteflexing) preserving
all bar lengths, other than the trivial translations and rotations in Euclidean space. Otherwise
it is rigid. Obviously if a structure admits a finite flexing, then it also admits an infinitesimal
flexing. If a structure admits no non-trivial infinitesimal flexing, it is said to beinfinitesimally
rigid. Obviously a flexible structure is also infinitesimally flexible. The converse is not
always true, since there may be special situations in which a structure is infinitesimally
flexible but does not have finite flexings. Figure 1(a) shows an example of a structure that
admits a finite flexing, and therefore is not rigid. If one more bar is added, the extra degree
of freedom corresponding to the flexing may be eliminated. Figure 1(b) is an example
of a structure which is both rigid and infinitesimally rigid. However, the same triangle
has special combinations of site locations for which infinitesimal rigidity is lost. This is
exemplified in figure 1(b), in which the three sites are aligned. As a consequence site
3 may be displaced by a small amount in the direction of the normal to bar 12, and all
bar lengths remain unchangedto first order in the displacement. Therefore this structure is
infinitesimally flexible, though it is rigid to second order in the displacement.

These situations for which rigidity does not imply infinitesimal rigidity are very
rare. They only occur for a ’small’ set of site locations, which are calleddegenerate
configurations. The complement of this set, thegeneric configurations, form an open
dense subset of space. For a generic configuration, infinitesimal rigidity is equivalent to
rigidity. Configurations in which all site coordinates are randomly chosen are generic with
probability 1 (a precise definition will be provided in the next section).

The importance of infinitesimal rigidity can be easily understood in physical terms.
One can define a structure to bestatically rigid if it is able to compensate, by means of

† For a definition see the second footnote on the title page of this paper.
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suitable finite stresses in its bars, any equilibrated load applied to its nodes. It is a classical
engineering result that static rigidity is equivalent to infinitesimal rigidity (see [9] for a
proof). Therefore infinitesimal rigidity, and not rigidity, is the relevant concept in the linear
approximation of elasticity. Case (a) in figure 1 is obviously not statically rigid. Case (c)
is also not statically rigid because a load normal to bar 12 applied on site 3 cannot be
compensated by finite stresses on the bars, which are all parallel to 12.

When studying the oscillatory properties of a structure in the harmonic oscillator
approximation, infinitesimal flexibility is equivalent to the existence of degenerate, zero-
frequency modes. Note that cases (a) and (c) in figure 1 both have zero-frequency modes,
but for different reasons. In case (a) because there is no restoring force, and in case (c)
because the restoring force is zero in the linear approximation.

Throughout this work we will be concerned with the property of infinitesimal rigidity,
and therefore we drop the prefix ‘infinitesimal’ in what follows. As suggested by the
example in figure 1, a structure can fail to be rigid for two different reasons. In the first
place, because it has too few bars, or they are not correctly distributed. This has to do with
the topology of the lattice, i.e. it depends only on its connectivity, and not on the geometry
of the structure. We will say that a given structure isgenerically rigid if it has the required
minimum number of ‘correctly distributed’ bars. Generic rigidity is a necessary condition
for rigidity, but not a sufficient one. The importance of generic rigidity resides in the fact
that a generically rigid structure will be rigid for generic site locations. Generic rigidity
depends only on the number and location of the bars, and not on site locations. In other
words, generic rigidity depends only on the topological properties of the structure.

Topological information about a structure is conveniently represented by means of a
graphG = (V , E). Each site of the lattice is associated with a nodea ∈ V , while bars
are associated with edgesab ∈ E. The nodesa andb are adjacent if the edgeab exists.
The edgeab is said to beincident to nodesa and b and, conversely, the nodesa and b

are incident to the edgeab. Graphs as described here contain no information about the
geometry of the system (site locations), but only about its connectivity properties.

A graph contains enough information about a structure if we are only willing to discuss
its generic properties, i.e. those which are valid for ‘almost all’ sets of site locations, except
for those few degenerate configurations, which will be ignored. It is only meaningful to
do this if degenerate configurations, and therefore lattices which are generically rigid but
not rigid, are ‘exceptional’. A context in which this is justified is when site locations (an
assignment of site locations to the nodes of a graph is called arealization of the graph)
are randomly chosen. This ensures that degenerate configurations have zero probability of
appearing, i.e. degenerate realizations are a zero measure set. In view of this we would like
to determine, from topological information only, whether a given graph is generically rigid.
A first condition which must be satisfied is that the numberb of bars be sufficiently large.
Sincen points ind dimensions havedn degrees of freedom and each bar restricts one degree
of freedom,b has to be at least equal todn− d(d + 1)/2†, whered(d + 1)/2 is the number
of distance-preserving linear transformations ind dimensions (d translations andd(d −1)/2
rotations). However, a correct global count of bars is not enough to ensure rigidity, since
bars could be ‘crowded’ on certain subsets of the graph, while others have less bars than
needed to make them rigid. If a certain subgraph has more bars than necessary, some of
them areredundant, and this subgraph isoverconstrained. Bars which are not redundant
are said to be(generically) independent. A sufficient condition for (generic) rigidity is that
the graph possessesdn − d(d + 1)/2 (generically) independent bars. We see that the key

† We are assumingn > d.
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point is that of being able to identify independent bars. The basic theoretical tool for doing
this in two dimensions is provided by a theorem due to Laman [2].

Theorem 1 (Laman).The edges of a bar and joint graphG = (V , E) are generically
independent in two dimensions if and only if no subgraphG′ = (V ′, E′) has more than
2n′ − 3 edges.

Laman’s theorem constituted the first graph-theoretic characterization of rigidity in two
dimensions, but in its original form it would give a very bad algorithm since it requires
testing all possible subgraphs, of which there is an exponentially large number. There are
some equivalent restatements of this theorem [7, 9], some of which give rise to polynomial-
time algorithms. Using one such equivalence due to Sugihara, Hendrickson [13] has recently
proposed an algorithm for testing generic rigidity of two-dimensional graphs, which is simple
enough to admit an on-lattice implementation [17]. Roughly described, Hendrickson’s
algorithm consists in adding edges one by one to the graph and matching [14, 15] them to
the nodes. If the matching succeeds, the new edge is independent and is left on the system.
If the matching fails, then (a) the set of edges visited during the failed search is mutually

(a) (c)

(c)

Figure 2. In the bar–joint representation (a), each site of the lattice is associated with a node
of the graph, and bars are represented by edges. If sub-sets of rigidly connected sites (b) are
combined intobodiesand represented by a node, we get thebody–bar representation (c). The
resultant structure is amultigraph since several edges can connect a given pair of nodes. The
process of replacing a set of rigidly connected nodes by one node is calledcondensation.
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rigid, and (b) the last edge is redundant. This algorithm has a worst-case time complexity
that scales as O(n2). One factor ofn arises as edges are added one at a time, while the
degree to which the computational time is greater thann is determined by the typical size
of the search that must be performed in order to match each added edge. If O(n) sites are
mutually rigid, this size is of ordern, and the algorithm is of ordern2. However, in this
case considerable time is spent in searching over edges that have been previously identified
as mutually rigid. There is thus room for improvement, and this work is devoted to the
description of such an improved algorithm.

To avoid the need to search over edges which have already been identified as mutually
rigid, it is natural to combine mutually rigid edges into clusters or ‘bodies’ [8, 12, 20, 21,
23, 24]. To develop this idea into a workable algorithm, we note that any bar and joint
graph can be considered as being composed of bodies and bars, where eventually some of
the bodies may be ‘trivial’ bodies with just one site. Each body is represented by a node
in a multigraph. An example of this is shown in figure 2. Each body, composed of several
sites rigidly connected by bars, is shown as a node in the multigraph of figure 2(c). One of
the advantages of the body–bar representation is that the number of elements in the graph
is smaller, and may be reduced each time a cluster of rigidly connected bodies is identified,
by replacing them by just one node in a process we will callcondensation.

Of course, we now have to demonstrate that the idea is sound, and for that we must
restate the relevant theoretical results [13] in terms of bodies and bars. We start in
section 2 by introducing therigidity matrix, which will help us to more precisely define the
concepts of infinitesimal rigidity, generic rigidity, generic configurations and of redundant
and independent bars, and also to discuss the necessary conditions for generic rigidity. In
section 3 we express Laman’s theorem in the body–bar language, while section 4 shows how
Hendrickson’s algorithm is generalized for this case. Section 5 discusses some practical
implementation details. Also in this section the performance of the body–bar algorithm
introduced here is compared to that of the previously existing joint–bar version. We will
see that the body–bar algorithm has much better scaling properties for the two examples
analysed, even when its worst-case behaviour is the same as that of the joint–bar algorithm,
that is, O(n2).

2. Rigidity matrix for two-dimensional body–bar systems

In what follows we will only consider two-dimensional structures, unless explicitly stated
otherwise. Consider figure 2, in which the relationship between a bar–joint and a bar–body
representation is explicitly drawn. Any subset of rigidly connected bars and sites can be
replaced by abody, a rigid object that in two dimensions has three degrees of freedom, two
displacements and one rotation. We call all remaining barsexternal. Each body has a set of
joints on its surface, to which external bars are incident. We letxi be the location of jointi
belonging to bodya. An infinitesimal motion is a set of instantaneous velocities{vi}, one
for each joint, which leave all bar lengths unaltered. This condition is written as

(xi − xj ) · (vi − vj ) = 0 (1)

for every barij with i ∈ a, j ∈ b. We now express the velocities of the joints in terms of
the velocities of the body to which they belong. For this we select an arbitrary pointxa for
each bodya, and say that the velocityvi of any joint i of a body is equal to the velocityva

of xa plus a rotational component, which isωa ∧ (xi −xa), whereωa is the angular velocity
(a vector normal to the plane) of bodya, and∧ indicates vector product:

vi = va + ωa ∧ (xi − xa). (2)
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Without loss of generality, we can choose all those arbitrary reference pointsxa to be at
the origin and obtain

vi = va + ωa ∧ xi. (3)

Now let us rewrite (1) by using (3), so that

(xi − xj ) · {(va − vb) + ωa ∧ xi − ωb ∧ xj } = 0. (4)

A little algebra shows that (4) can be reduced to

(xi − xj ) · (va − vb) + (xj ∧ xi) · (ωa − ωb) = 0. (5)

This set of equations can be formally written as

M̃V = 0 (6)

whereV is the vector of velocities and contains three entries for each body. Each row inM̃

corresponds to a barij . Conditions (1), when written in the bar–joint representation, also
give rise to a matrix equation of the form (6). In the bar–joint representation only the first
term in (5) occurs, each row of the rigidity matrix is associated with the vector(xj − xi),
and there are four non-zero elements per row. In the body–bar case, each row of the rigidity
matrix is associated with the ‘line–bound vector’(xj − xi, xi ∧ xj ) and there are 6 non-zero
elements per row sincexi ∧ xj is a pseudoscalar in two dimensions. Line–bound vectors
represent a force acting along a line [5] and, in contrast to vectors, are not translationally
invariant. They are only invariant under translations in the direction (xi − xj ), meaning
that a force can be moved along its line of action without changing its effect. Line–bound
vectors have three independent components in 2D, two of them are needed to determine the
vector and the third one locates its line of action in the plane.

We will consider the general case of multigraphs formed byn bodies andm point-like
(or ‘trivial’) bodies, as in figure 4 later, which we denote asG(n, m). The general equations
(5) or (6) hold forG(n, m) with the additional constraint that the angular velocitywa = 0
for each of them point-like bodies. These additional constraints reflect the fact that rotation
is irrelevant for them, so their angular velocities can be arbitrarily fixed, thus reducing the
dimension ofV . Counting the number of degrees of freedom, we then find (3n + 2m). The
space of solutions of (6) has at least dimension 3, since two rigid translations and a rotation
of the system as a whole leave all bar lengths unchanged. This means that the rank ofM̃

cannot be larger thanK(n, m) = 3n+2m−3. The system is said to be (infinitesimally) rigid
if the rigidity matrix has this maximal rankK(n, m), which means that theonly infinitesimal
motions are the Euclidean rigid transformations.

A realization is an assignment of site locations to all nodes of a graph. For certain
(degenerate) realizations, the rank of the rigidity matrix may be accidentally lowered by
the existence of algebraic dependencies between the node coordinates (degeneracies). This
will only happen if a determinant is zero, and given that determinants of the rigidity matrix
are polynomials in the site coordinates, degenerate realizations must satisfy a finite number
of polynomial equations. Therefore the subset of configurations for which the rigidity
matrix attains the maximum possible rank over all sets of coordinates constitutes an open
dense subset. We say that a realization isgeneric if all site coordinates are algebraically
independent over the rationals. Therefore at a generic configuration the rank of the rigidity
matrix attains its maximum value over the site coordinates.

A set of edges isindependentif their associated rows iñM are linearly independent in
an algebraic sense. This means that an edge will be independent if and only if by removing
it the rank of the rigidity matrix is decreased by one. Cases (a) and (b) in figure 3 are
independent, but case (a) is flexible, while case (b) is infinitesimally rigid.
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Figure 3. A simple body–bar structure for which: (a) the bar set is independent, and the
structure is flexible; (b) the bar set is independent, and the structure is rigid; (c) the bar set
is dependent due to an excess of bars, and the structure is rigid; and (d) the bar set becomes
dependent at a degenerate configuration, and the structure becomes infinitesimally flexible there.
In this last case, the existence of a common intersection point for three bars is a non-generic
configuration at which the rank of the associated rigidity matrix is reduced from its generic
value of 3 to a non-generic value of 2. The extra eigenvector is identified as an infinitesimal
relative rotation of the two bodies around the common intersection point.

If the removal of a given edgee does not alter the rank of̃M, e is dependentor
redundant. Dependencies can arise because there are too many bars (for example the edge
set in figure 3(c)) or because of degenerate configurations. (for example three bars with
a common point as in figure 3(d)). The difference is that case (c) is infinitesimally rigid
while case (d) is not. The dependency produced by the coincident intersection point has
reduced the rank of the rigidity matrix from its maximum value of 3 to a value of 2. There
is therefore one extra infinitesimal motion, which can be identified as a relative rotation of
the two bodies around the intersection point of the bars. A similar reasoning holds for the
example shown in figure 1(c).

Once the atypical character of degeneracies is recognized, we are justified in ignoring
them, and concentrate on generic properties only. Therefore we define generic rigidity by
saying that:a structure is generically rigid if its rigidity matrix attains its maximum rank
K(n, m) at a generic configuration. The relevance of generic properties is ensured by a
theorem due to Gluck [3].

Theorem 2 (Gluck).If a graph has a single infinitesimally rigid realization, then all its
generic realizations are rigid.

In other words,

At a generic realization, a structure is infinitesimaly rigid if and only if it is higher-
order rigid if and only if its multigraph is generically rigid.

In addition to the property of generic site locations already defined, we will assume
the following generic incidence conditionto hold: no three bars can be incident to the
same joint of anon-trivial body. This condition means that bars incident to the same body
are located on generic lines. In what follows, whenever we refer to generic realizations
of multigraphs we will be assuming generic joint locations as well as generic incidence.
Notice that multiple incidences are allowed if they occur on trivial (single-site) bodies. An
example of a multigraph that is generic in the sense required here is shown in figure 4.
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Figure 4. A multigraph that satisfies the generic incidence condition. No surface joint has more
than two incident bars. Point-like bodies can have an arbitrary number of incident bars.

Throughout this work we will assume all multigraphsG(n, m) to contain at least one
non-trivial body or two point-like ones, that is,n + m/2 > 1. Excluded then are the graph
with no nodes and those with just one trivial (point-like) body. Under this condition the
following results follow almost trivially from our discussion of the rigidity matrix.

Theorem 3.Every rigid multigraphG(n, m) has a subset ofK(n, m) independent bars.

Theorem 4.If a multigraphG(n, m) has more thanK(n, m) bars, some are dependent.

Theorem 5.If a multigraphG(n, m) with exactlyK(n, m) = 3n+2m−3 bars is rigid, then
there is no subgraphG′ with more thanK(n′, m′) bars.

In the process of obtaining the bar–body representation from the bar–joint representation,
we have replaced subsets of rigidly connected sites by bodies with three degrees of freedom.
This does not change the number of independent infinitesimal motions of the system,
since these subsets, being rigid, had three degrees of freedom each. This means that the
dimension of the null space of the rigidity matrix is the same in the bar–joint and bar–body
representations. A consequence of this is the following.

Theorem 6.A set E of external edges is dependent in the body–bar representation if and
only if it is dependent in the corresponding joint–bar representation.

Proof. The removal of an independent edge causes the rank of the rigidity matrix to change,
increasing by one the number of independent infinitesimal motions. Assuming a given edge
e ∈ E to be dependent in one representation but not in the other would then conflict with
our discussion above. �

Another result which we need for later use is the following.

Theorem 7.If an edgee incident to a non-trivial (trivial) bodya and to some other body
b 6= a is dependent, then there exist at least three (two) other edges{e′, e′′, e′′′} ({e′, e′′})
incident toa which are also dependent.
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Proof. Let a be a non-trivial body and assume that an edgee incident toa is dependent.
Take the row ofM̃ corresponding toe, which under the hypothesis can be expressed as a
linear combination of other rows of̃M, and consider its three components associated with
the three degrees of freedom ofa. These are the three components of a line–bound vector,
and are independent degrees of freedom in a generic realization so that at least three other
line–bound vectors (rows ofM̃) are needed to express it as a linear combination. The
demonstration for the case in whicha is a trivial body is similar, except that vectors (two
degrees of freedom) take the place of line–bound vectors, and therefore only two other
edges are needed. �

We have introduced the rigidity matrix̃M through a discussion of infinitesimal rigidity,
but it also appears in the context of static rigidity, describing how external loads are resolved
into stresses on bars. Dependent subgraphs can then be identified to be those that can sustain
equilibrated internal stresses even in the absence of external loads.

3. Laman’s theorem for body–bar systems

A general graph-theoretic characterization of rigidity for linkages of bodies inn-space was
first provided by Tay [8]. We will derive a similar result in two dimensions, which holds for
the case of mixed multigraphs, and which we need for our algorithm. Mixed multigraphs
are those including point-like bodies as well as non-trivial ones. Our derivation is based on
Laman’s theorem for bar–joint systems.

Theorems 3 and 5 imply that a rigid system must have a set ofK(n, m) well distributed
bars, where the meaning of ‘well distributed’ is that no subgraph has ‘too many’ bars. This
condition is known, in the context of bar–joint systems, as Laman’s condition, and is a
necessarycondition for rigidity in any space dimension (in a suitably generalized form).
The converse, i.e.K(n, m) well distributed bars⇒ rigid does not hold in any dimension
above 2. A counterexample in three dimensions, due to Whiteley, is shown in figure 5.
This structure satisfiesb′ 6 3n′ − 6 for all subgraphs withn′ > 2, yet it is dependent and
therefore non-rigid.

Laman was able to show [2] that the ‘correct distribution’ of bars is a sufficient condition
for rigidity in two dimensions (theorem 1 above). Here we translate his result to the body–
bar case and show that

Theorem 8.The edges of a multigraphG(n, m) = G(Vn, Vm, E) are independent in 2D if
and only if there is no submultigraph̃G with more than 3̃n + 2m̃ − 3 edges.

Proof. The demonstration of necessity, i.e. independent⇒ well distributed, follows trivially
from theorem 4 above. In order to demonstrate sufficiency, we will transform the body–
bar graph to a bar–joint graph and use Laman’s theorem to show that, if a multigraph is
dependent, there is a subset of it with too many bars, i.e. a bad submultigraph.

Assume that a multigraphG = (Vn, Vm, E) contains a subsetE′ of dependent bars.
Let G′ = (V ′

n, V
′
m, E′) be the submultigraph ofG defined by restricting the edge set toE′

and the node sets to those nodes incident to some edge inE′. For each non-trivial body
a ∈ V ′

n, let the cardinalityga be the number of joints on its surface to which barsab ∈ E′

are incident. According to theorem 7, in order for a non-trivial bodya to belong toV ′
n,

at least four of its incident bars must belong toE′. This together with the condition of
generic incidence (section 2) impliesga > 2. A body of cardinalityga > 2 can be replaced
by an isostatic bar–joint graphGa made up of 2ga − 3 well distributed ‘internal’ bars and
ga point-like bodies, these last taking the place of surface joints. Doing this for each of the
n′ non-trivial bodies inG′ leads to theexpandedgraphGE .
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Figure 5. The graph in this figure has no rigid realization
in three dimensions, even when it has all the required
18 = 3×8−6 bars, and no subgraph of it violates Laman’s
conditionb′ 6 3n′ − 6.

Theorem 6 implies thatE′ is also dependent in the expanded graphGE , and since
Laman’s theorem in its original form applies to it, there must be a subgraphG̃E = (Ṽ , Ẽ)

of GE with b̃ bars andm̃ joints such that̃b > 2m̃ − 3.
We will in general havẽb = b̃e + b̃i , whereb̃e is the number of external edges andb̃i

the number of internal edges iñE. Ẽ cannot be entirely formed by internal edges since
they are well distributed, and therefore it must contain one or more external edges. Two
cases are possible:

(a) There are no internal bars iñE.
If this is the case none of the nodes ofG̃E can be the surface joint of a body. The

reason for this is theorem 7. At least three bars incident to a point are dependent if one
of them is. However, if none of them is internal the point cannot be a surface joint since
at most two incident bars are allowed per surface joint in generic multigraphs. This means
that no bar inẼ is incident to a subgraphGa. In this case the bad subgraph is entirely
formed by point-like bodies and the result follows immediately since Laman’s theorem is a
particular case of this one (withn = 0).
(b) There are one or more internal bars inẼ, or equivalently, there is at least one edge
e ∈ Ẽ incident toGa for some bodya.

If this edgee has both ends incident to the sameGa, then we have identified the bad
sub-multigraph as being formed by bodya and this edge with both ends connected to it,
since 1= b > 3n − 3 = 0. Then assume that no edgee ∈ Ẽ has both ends connected to the
sameGa. For each bodya to which some edgee ∈ Ẽ is incident, letG̃a with g̃a nodes and
b̃a edges, be the subgraph ofGa contained inG̃E . Let ñe be the number of such bodies,
and m̃e the number of joints inG̃E other than surface joints. The condition thatG̃E be a
bad subgraph is then rewritten

b̃e +
ñe∑

a=1

b̃a > 2

(
m̃e +

ñe∑
a=1

g̃a

)
− 3. (7)

Theorem 7, together with the generic incidence condition, ensure thatg̃a > 2. SinceGa
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are independent by construction Laman’s condition then impliesb̃a 6 2g̃a − 3. Using this
and (7) we get

b̃e +
ñe∑

a=1

(2g̃a − 3) > 2

(
m̃e +

ñe∑
a=1

g̃a

)
− 3 (8)

or

b̃e > 2m̃e + 3ñe − 3 (9)

which finishes the demonstration for generic body–bar graphs. �
Non-generic graphs, i.e. those with more than two bars incident to a joint of a body (we

call this ‘multiple incidence’) can also be handled by transforming them into an equivalent
generic graph in the following form. Notice that there is no limitation on the number of bars
incident to point-like bodies. Thus we can simply replace each multiple-incidence joint of a
body by an auxiliary structure made of a point-like node connected to the body by two new
bars, like in figure 6. The graph obtained by transforming in this way all multiple-incidence
joints is generic in the sense required here, and therefore the extended Laman’s theorem
(theorem 8 above) applies to it. It is easy to see that this transformed graph has equivalent
rigid properties.

Figure 6. A graph with a multiple-incidence joint (a surface joint with more than two incident
bars) is not generic. An equivalent graph (with the same rigid properties) that is generic can be
obtained by detaching the surface joint and connecting it to the body with two auxiliary bars
(dashed lines).

4. The algorithm

Laman’s theorem constitutes a graph-theoretic characterization of rigidity, but a naive
implementation of it, namely checking all possible subgraphs, would give a very poor
algorithm. Sugihara [7] and later Hendrickson [13] have used a reformulation of Laman’s
theorem to propose efficient (polynomial-time) algorithms for this problem. This section
follows Hendrickson’s approach, adapting his arguments to the body–bar case where needed.

We first define the bipartite graphB(G) generated by a graphG(Vn, Vm, E) in the
following way: B(G) is composed of two sub-sets of nodesV 1 andV 2, and a set of edges
connecting nodes ofV 1 with nodes ofV 2. There are no edges between nodes in the same
subset (that is what defines a bipartite graph). The first subsetV 1 is the set of edgesE of
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(a)

(b)

Figure 7. (a) The original graphG(Vn, Vm, E) hasVn = {A, B} (non-trivial bodies),Vm = {C}
(point-like bodies) andE = {1, 2, 3, 4} (edges). (b) The bipartite graphB(G) derived fromG

has as node set the union ofV 1 andV 2. V 1 is the edge set ofG, while V 2 is made of three
copies ofVn plus two copies ofVm. Elements ofV 1 andV 2 are connected by an edge inB(G)

if they are incident inG.

G, while V 2 is composed of three copies of the set of non-trivial nodesVn plus two copies
of the set of point-like nodesVm. Edges ofB(G) connect the edges(ab) of G ( V 1 nodes)
to all copies (V 2 nodes) of the bodiesa andb to which (ab) is incident. An example of
this is shown in figure 7. We now briefly describe some concepts from graph theory which
we need for our algorithm. The reader is referred to the literature on the subject [14, 15]
for detailed accounts.

A matchingM of a graph is a subset of edges, no two of which share a node. Edges in
M are said to bematched, and edges not inM unmatched. Nodes incident to a matched
edge arecovered, while the rest areexposed. If (ab) ∈ M, nodesa and b are mates. A
matchingM is maximumif it has the largest possible number of edges. A matching is
perfector completeif no node is exposed. Obviously, a perfect matching is also maximum.
The matching problem(finding maximum matchings) is a classic in graph theory, and has
many practical applications. Apath is a chain of edges of the form{(ab)(bc)(cd) · · ·},
and it isalternating if matched and unmatched edges follow each other in the succession.
An alternating path{(ab)(bc) · · · (xy)} is anaugmenting pathif both a andy are exposed
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nodes. The name is due to the obvious fact that any such path allows one to increment the
number of edges in the matching by one, simply by interchangingmatched↔ unmatched
along the path. Moreover, the problem of finding a maximum matching can be reduced to
that of finding augmenting paths, since

Theorem 9.M is maximum ⇐⇒ there are no augmenting paths.

Then a maximum matching is found by repeatedly discovering and inverting augmenting
paths. A particularly simple case is the matching of bipartite graphs, i.e. those whose node
setV can be partitioned into two subsetsV 1 andV 2 such that no edge is incident to two
nodes in the same subset. The search for augmenting paths can be efficiently done by
growing Hungarian treesfrom exposed nodes. They are built by breadth-first search (BFS)
in the following way. Consider figure 8, in which thick lines represent edges in the current
matching. We start the search for augmenting paths from an exposed nodev1 ∈ V 1. Take
node 1 for example. Following all unmatched (thin) edges incident fromv1, go to nodes
v2 in V 2. Sincev1 is exposed it is incident to unmatched edges only. In our example of
figure 8 these edges lead toA, B. If any of thesev2 nodes is exposed, we have found an
augmenting path. If not, their mates inv1 are sent to aqueueQ for further inspection.
These mates are 2, 4 in this case. Nodesv2 are markedvisited. Once all neighbours of 1
have been exhausted without finding an exposed node, the next elementv1 in queueQ is
taken. Say it is node 2. All unmatched edges incident to 2 are followed tov2 in V 2 and,
if some of them lead to an exposed node, the search is over. Otherwise, and ifv2 was not
visited before, it is marked visited and its mate inV 1 is sent toQ. In our example this
would result in node 3 being sent toQ. The procedure proceeds in this way until either an
exposed node inV 2 is found, orQ is depleted. In our example, after taking node 4 from
Q we would find nodeD exposed. The matching can then be enlarged to cover node 1 by
inverting the pathD → 4 → B → 1. If on the other handQ is depleted without finding an
exposed node inV 2, there is no augmenting path from 1. We say in this case thatv1 cannot
be matched. Now we are ready to discuss some results needed for our algorithm. Using
the relation betweenG andB(G) we can give an equivalent formulation for the extended
Laman’s theorem, which will provide the basis for our algorithm.

Theorem 10.The following are equivalent:

Figure 8. A matching M (thick lines)
can be enlarged to cover node 1 if an
augmenting path is found. Starting from
1 all unmatched (thin) edges are followed
to nodes inV 2, and from them all matched
edges are followed back to nodes inV 1,
in a breadth-first manner. Repeating this
procedure, an exposed nodeD is found
in V 2. If thin and thick edges are now
interchanged along the path 1→ D, the
enlarged matching is obtained.
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(A) The edges ofG are independent in two dimensions.
(B) For every edgeab in G, the multigraphGab formed by quadruplingab has no subgraph
with b′ > 3n′ + 2m′.
(C) For each edgeab in G, the bipartite graphB(Gab) has no subset ofV 1 that is adjacent
only to a smaller subset ofV 2.
(D) For each edgeab in G, B(Gab) has a complete matching fromV 1 to V 2.

Proof. The equivalence of (A) and (B) is a trivial consequence of Laman’s theorem in
its extended form. The equivalence of (B) and (C) is an immediate consequence of the
way in whichGab is constructed. If such a subset exists, one would haveb′ nodes ofV 1
connected only to 3n′ + 2m′ < b′ nodes ofV 2. To prove that (C) and (D) are equivalent,
it is easy to first see that (C) is necessary for (D). To prove that (D) is necessary for (C),
assume that no complete matching exists. Then there exists at least one exposed nodex

in V 1. Do a breadth first search (BFS) in the following way. Starting fromx, follow all
unmatchededges fromV 1 to the nodes inV 2, and from them allmatchededges back to
V 1 and so on. For each new node inV 1 found (includingx), increment in 1 a variablek1,
and for each new node inV 2 do the same withk2. Both k1 andk2 start from zero. Each
new node inV 2 leads automatically to a new node inV 1, because the hypothesis implies
that no exposed node can be found. Therefore when the BFS comes to an end (because all
V 2 nodes have been visited once) we have thatk1 = k2 + 1 and we have identified a subset
of k1 nodes ofV 1 adjacent to onlyk1 − 1 nodes ofV 2. �

Theorem 3 means that, in order to recognize whether a given graph is rigid, we have to
count the number of independent bars it has, or equivalently, be able to detect how many
of them are dependent. Our rigidity testing algorithm will be based upon theorem 10(D),
and consists in adding edgese one at a time to a set of independent edgesÊ, and testing
whether this enlarged̂E′ is independent. If this is the case,e it is definitively added toÊ,
otherwisee is identified as a dependent edge (e is not independent of̂E) and removed from
the graph.

Adding a new edgee to Ê produces the graphG, and its associated bipartite graphB(G).
We know by theorem 10(D) thate is independent ofÊ if and only if a complete matching
from V 1 toV 2 exists inB(Gab) when any edgeab in Ê′ = e∪Ê is quadrupled. Fortunately
only the last edgee needs be quadrupled, as the following result due to Hendrickson [13]
demonstrates.

Lemma 11.Add a new edgee to an independent edge setÊ. If a complete matching in the
sense of theorem 10 exists whene is quadrupled, then̂E′ is independent.

Proof. AssumeÊ′ is not independent. Then there must exist some edgee′ ∈ Ê′ whose
quadrupling causes some subgraphG′ of G to have ‘too many edges’. This subgraphmust
include e since Ê is an independent set. However, this subgraph would have the same
number of edges ife is quadrupled instead ofe′, therefore a complete matching would not
be possible ife is quadrupled. �

Then in order to determine if a new edgee is independent of a set̂E we have to enlarge
a bipartite matching to cover the four copies of the new edgee in V 1. If this cannot be
done,e is redundant. We have then an algorithm which enables us to identify redundant
bars. However, we also need a means to identify rigid clusters in the system. The advantage
of the body–bar representation over the original formulation in terms of joints is that each
new rigid cluster which is identified may be replaced by one node, therefore reducing the
size of the system. We will now see how these rigid clusters are detected. For this we need
the following results [13].



An efficient algorithm for testing generic rigidity 8093

Theorem 12.If three copies of a new edgee are added to an independent setÊ generating
a graphG′′, thenB(G′′) has a complete matching fromV 1 to V 2.

Proof. Assume there is no matching whene is tripled. Then there is some subgraphG̃

of G′′ for which b̃ > 3ñ + 2m̃. Remove the three copies ofe and quadruple any of the
other edges. This graph has the same number of edges asG̃ so it can also not be matched.
However, this is a contradiction if̂E is assumed to be independent. �

Theorem 13.If the edgee is dependent ande is quadrupled, the failing Hungarian tree spans
a minimal subset of edges in̂E which form an isostatic subgraph.

Proof. Since we added four copies of the new edge, the number ofv1 nodes visited by
the failing Hungarian tree isb′ + 4, whereb′ of them belong toE. The number ofv2
nodes visited is by construction of the bipartite graph 3n′ + 2m′. However, in a previous
demonstration, we saw that when a BFS fails, it visitsk1 nodes inV 1 andk2 nodes inV 2
with k1 = k2 + 1. Therefore,b′ + 4 = 3n′ + 2m′ + 1, or b′ = 2m′ + 3n′ − 3, which is the
condition for an isostatic subgraph. This subgraph is minimal, since removing any of its
edges would make the matching possible, by freeing onev2 node. �

The algorithm then proceeds as follows: Starting from a (possibly empty) setÊ of
independent edges, test new edgese one by one by adding them tôE and trying to enlarge
an already existing matching ofB(Ge), which contains four copies ofe in V 1.

• If all four copies can be matched, the new edgee is independent. Remove the three
extra copies and adde to the set of independent edgesÊ.

• If the matching fails for the fourth copy ofe (the first three can always be matched),e

is dependent and the failing Hungarian tree identifies a rigid subset of nodes. Remove
all four copies.

The rigid subgraphGa identified by a failed search may becondensedto a unique bodyA.
This condensation step simply amounts to a deletion of all bars and bodies visited during
the failed search, and replacing them by a unique body. Therefore the amount of work
involved in one condensation is equivalent to that needed for one BFS. All bars incident to
Ga are, after the condensation, incident to bodyA. Condensation is only possible because
we are able to handle bodies, and is a key step in our algorithm.

Bars whose both ends are found to be connected to the same rigid body are not tested
because they are obviously dependent. This means that the same subset of nodes is not
condensed twice, so that each condensation involves at least one node which has never been
condensed. Therefore there will be at mostn condensations. The condensation step requires
just deleting all bars and bodies in the failed Hungarian tree, therefore the total amount of
work needed for condensations is at most O(n), since there are at most O(n) bars inÊ, and
no bar is condensed twice.

A new bar leads either to a condensation or to a new element inÊ. Both happen at
most O(n) times, so that at most O(n) tests are needed. Since each test involves growing
four Hungarian trees, each one taking (at most) a time proportional to the number O(n) of
edges inÊ, the algorithm has a worst-case time complexity of O(n2).

This theoretical bound is the same as for Hendrickson’s algorithm [13]. It is not difficult
to understand why the worst-case complexity of the body–bar algorithm cannot be better
than O(n2). If no condensations ever occur, our algorithm is the same as Hendrickson’s.
However, this would only happen if there are no redundant bars, since each redundant bar
identifies a rigid subgraph and leads to a condensation. We can see that while the joint–bar
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algorithm has its worst-case performance in all cases in which there is long-range rigidity†,
the body–bar algorithm can only be pushed towards O(n2) behaviour in the improbable case
of long-range rigidity without redundancies (long-range isostatic rigidity). This situation
is not frequent in physical systems with disorder, where rigidity is always redundant.
Therefore we expect the body–bar version here introduced to perform much better than
the original joint–bar version on practical applications such as rigidity percolation [16, 17],
glasses [10, 20] or granular materials [12].

5. Implementation and performance of the algorithm

The body–bar algorithm described in this work has been recently applied [16] to study
rigidity percolation on site diluted-triangular lattices. In this work we will present the
comparison of performance between this algorithm and the original site-and-joint version,
for bond and site dilution on triangular lattices. Bonds or sites are present on the lattice with
probability p. Initially random numbers are assigned to bonds in the following manner:
In the bond dilution case, each bondij is assigned a random numberbrn(ij). For site
dilution, sitesi are given a random numbersrn(i) and afterwards bonds are assigned
brn(ij) = max(srn(i),srn(j)). In both cases, bonds are sorted in order of increasing
brn and tested in that order. The rest of the procedure is the same for bond or site dilution.
This scheme allows one to exactly detect the percolation point [16], but is not the only
possibility. For example, one could fixp to a certain value and, starting from an empty
system, test all bonds for whichbrn < p in arbitrary order. The time-complexity of the
algorithm depends on the order in which bonds are tested, although its results do not.

The graph data structure is stored using based (pointer) variables because, in contrast to
the regular lattice which originates it, the multigraph has no regularity, and its size changes
during the procedure, which makes static allocation of memory impractical. A new bond is
tested by adding four copies of it (V 1 nodes) to the bipartite graph and attempting to match
them to the bodies (three copies of each exist on the graph) or sites (two copies of each)
in V 2. If the four copies are matched, the new bond is marked as being independent and
its three additional copies are removed from the graph. If the fourth copy is not matched,
the new bond is marked redundant. The set of bonds covered in the last search is in this
case a rigid subgraph. This rigid subgraph isminimal, which means that if any of its edges
is removed then the matching would be possible. This subgraph identifies then the subset
of E upon whiche is dependent. The concept of dependence can be recast to mean that a
self-stress is possible, therefore the failing BFS identifies the set of edges ofG which would
be stressed if the new edgee is say, too long or too short. This feature of the algorithm
is very important in, for example, rigidity percolation [16], since it provides a means to
identify the stress-carrying part of a rigid cluster.

Each time a rigid subgraph is identified a routinecondensation is called, which
replaces all its elements (enclosed bars and bodies) by a single body, putting three copies
of it in the graph. All external bars (bars incident to an enclosed body from a non-enclosed
body) are now incident to the new body. At a practical level the only difference with
Hendrickson’s original algorithm is this condensation step. If the replacement of rigid
objects by one node is not done, one has the original bar–joint algorithm. One must in this
case [13] mark all enclosed objects with the new rigid label to avoid the need to test bonds

† By long-range rigidity we mean that O(n) sites are rigidly connected, and therefore the size of most BFSs is
O(n), since rigidly connected subgraphs contain no free (unmatched)v2 nodes. This situation pushes the joint–bar
algorithm towards its worst-case behaviour, O(n2), when edges are tested in random order.
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both ends of which connected to the same rigid graph.
As mentioned in section 3, multiple incidence joints must be replaced by an auxiliary

structure in order to have an equivalent graph which is generic. In fact it is necessary to do
this only in the bond-diluted case, since for site dilution no multiple incidence points are
possible. For simplicity we always use auxiliary structures for incidence points to bodies,
although they are only necessary if the number of incident bars is larger than two (section 3).
In this way the procedure is much simpler (otherwise the number of incident bars should
be checked after each condensation or addition of a new edge) while the performance is
not seriously affected.

We saw already that rigid clusters will only be detected if a bond is tested on them, that
is, if a bond is found to be redundant. In other words, the algorithm naturally identifies self-
stressed (hyperstatic) regions, while isostatic rigid clusters would go unnoticed if no bond
is tested on them. In the study of rigidity percolation [16], one is interested in detecting the
exact concentrationpc of bonds at which an isostatic rigid connection between two sides of
the system first appears. This is not automatically provided by the algorithm. A possible
way to do it would be as follows: after testing each edgee, test afictitious bond connecting
opposite sides of the sample. If the fictitious bond is independent, then these sides are not
rigidly connected. Otherwise the first time that the fictitious bond is found dependent, a
rigid connection is identified between the two sides of the system. This method doubles
the number of tests (BFSs) needed. We now describe a better option, which allows the
detection of the rigidity percolation point without extra effort [16].

Two rigid bus-bars are assumed to exist on the upper and lower edges of the sample.
These are represented as two bodiesB1 and B2, and their corresponding three copies are
set inV2. Next a fictitious bondf connecting the two bus-bars is added to the graph. A
nodevf ∈ V 1 represents this fictitious bond in the bipartite graphB(G), and is adjacent
to three copies ofB1 and B2. This nodevf (just one copy of it) is matched to one of
these nodes before starting to test any other edges. Next edges in the system are tested
in order of increasing random numberrn. The first time that anisostatic rigid connection
exists between the bus-bars, because of the existence of this bondf that already restricts one
relative degree of freedom between the busses, a dependent subgraph will be found including
the fictitious bond. Thus the method to detect isostatic percolation is simply checking, at
each failed matching, whether the fictitious bondvf has been visited during the last search.
If so, the last added edgee is independent (the numberrn associated with this bond ispc),
and the subgraph visited in the failed search is exactly theelastic backbone†. All bars in
this subgraph exceptf are cutting bonds, that is, bonds whose individual removal would
produce the loss of rigidity (calledred bondsin scalar percolation). At the percolation point
the fictitious bond is removed.

Performance comparison

Both the body–bar and the bar–joint algorithms have a worst-case time complexity that
scales as O(n2). However, we argued that the body–bar representation has a more convenient
average-case behaviour, since searches are now done in a graph of much reduced number
of elements whenever there are rigidly connected subsets of sites. In this section these
differences are quantified. In order to do so we take as a test case the randomly diluted
triangular lattice. Total CPU times are measured as a function ofp for the bond- and site-
dilution cases. Bonds are assigned a random numberrn as described in section 5, and tested

† The spanning clusteris the subset of edges rigidly connected to bothB1 andB2. The subset of it that would
be stressed if a pair of forces is applied between the busses is called theelastic backbone.
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Figure 9. Total CPU times, in seconds, needed to test all present bonds of a randomly diluted
triangular lattice of sizeL = 128. These measurements were done both on site- and bond-diluted
lattices, using the body–bar (×, site dilution;+, bond dilution) and the joint–bar algorithms (◦,
site dilution;∗, bond dilution) on a SPARC10 workstation.

Figure 10. Graph showing that CPU times given in figure 9 scale with system size asLµ with
µ = 2 + θ(p). The exponentθ(p) determines how the size of a typical search scales with size
(see text). Symbols are the same as for figure 9. From the data in this plot we see that in the
bar–joint algorithm, this size grows almost as fast asn in the rigid phase, while for the body–bar
algorithm described in this work this size remains almost constant. This improved behaviour is
due to ‘condensation’ of rigidly connected clusters in the body–bar algorithm.

sequentially in order of increasingrn. In figure 9 we see a plot of CPU times required on
typical lattice of linear sizeL = 128 for both algorithms in the above mentioned cases. As
expected, the body–bar algorithm is more advantageous only in the rigid phase, since the
search for an exposed node takes place in a region which is typically of the size of rigidly
connected clusters. Each such region is represented by one node in the body–bar case, and
therefore searched over in just one step. At larger scales, further collections of bodies are
found to be rigidly connected and therefore replaced by one body, so that the size of the
typical searches is kept almost O(1).

In section 1 we mentioned that the time-complexity of this procedure is of orderL2
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(number of bonds tested) times the size of the typical search for an augmenting path, which
generally scales asLθ , with θ a function ofp. The overall CPU time then scales asLµ

with µ = 2+ θ(p). We estimate this (p-dependent) exponent by measuring CPU times for
sizesL = 256, 128, 64 and 32. Averages were done over 102 to 104 samples. Figure 10
shows the value of the exponentµ for the four cases under consideration, as a function of
p. We see that the body–bar algorithm has a time complexity that scales approximately as
n1.12, while the bar–joint algorithm scales approximately asn1.9, which is not much better
than the theoretical worst-case limitn2.
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